#### ANNA UNIVERSITY, CHENNAI AFFILIATED INSTITUTIONS REGULATIONS 2017 B. TECH. BIOTECHNOLOGY CHOICE BASED CREDIT SYSTEM

#### 1. Program Objectives (POs)

The primary objective of the Bachelor of Industrial Biotechnology program is to prepare professionals with the skills required to work in the Biotechnology industry with particular emphasis on the engineering aspects of manufacturing and design.

They are trained to

- 1. Achieve successful professional and technical career.
- 2. Have a strong foundation in Basic Sciences, Mathematics, Medical Sciences, Bioinformatics and process engineering.
- 3. Have knowledge on the theory and practices in the field of Biotechnology, especially in the areas of Downstream processing, Medical biotechnology and Bioinformatics and allied areas.
- 4. Engross in life-long learning to keep themselves abreast of new developments.
- 5. Practice and inspire high ethical values and technical standards.

The Overall objective of the Program is to promote education and research in biotechnology and provide academic and professional excellence for immediate productivity in industrial, governmental, or clinical settings for an ultimate benefit of society and environment.

As a result of this program, the student will be able to:

- 1. Recall factual information on broad knowledge based proficiency in core themes, principles and components of Basic Sciences.
- 2. Create and develop strategies that reflect the interdisciplinary nature of science, regulation and enterprise in the biotechnology industry.
- 3. Define and solve problems using scientific methods in biotechnology and allied subjects.
- 4. Consider implications of biotechnology in societal, environmental and educational frameworks.
- 5. Access current information and literature in science and Prepare and present scientific data.
- 6. Demonstrate knowledge of biological processes from the molecular and cellular perspectives.
- 7. Approach and solve biological problems critically with scientific literacy in individual and group settings.
- 8. Able to understand, analyze and apply the process engineering concepts an incredibly wide diversity of applications including pharmaceutical development, crop and livestock improvement, diagnostic and therapeutic medicine, industrial processing, and bioremediation of contaminated environments.

#### **SEMESTER VII**

| S. No. | COURSE<br>CODE | COURSE TITLE                        | CATE<br>GORY | CONTACT<br>PERIODS | L  | т | Ρ | С  |
|--------|----------------|-------------------------------------|--------------|--------------------|----|---|---|----|
| THEOR  | Y              |                                     |              |                    |    |   | • |    |
| 1      | GE8077         | Total Quality Management            | HS           | 3                  | 3  | 0 | 0 | 3  |
| 2      | BT8751         | Downstream Processing               | PC           | 3                  | 3  | 0 | 0 | 3  |
| 3      | BT8791         | Immunology                          | PC           | 3                  | 3  | 0 | 0 | 3  |
| 4      |                | Professional Elective V             | PE           | 3                  | 3  | 0 | 0 | 3  |
| 5      |                | Professional Elective VI            | PE           | 3                  | 3  | 0 | 0 | 3  |
| 6      |                | Open Elective II *                  | OE           | 3                  | 3  | 0 | 0 | 3  |
| PRACT  | ICALS          |                                     |              |                    |    |   |   |    |
| 7      | BT8711         | Downstream Processing<br>Laboratory | PC           | 4                  | 0  | 0 | 4 | 2  |
| 8      | BT8712         | Immunology Laboratory               | PC           | 4                  | 0  | 0 | 4 | 2  |
|        |                | -                                   | TOTAL        | 26                 | 18 | 0 | 8 | 22 |

\* - Course from the curriculum of the other UG Programmes

#### SEMESTER VIII

| S. No. | COURSE<br>CODE | COURSE TITLE | CATE<br>GORY | CONTACT<br>PERIODS | L | т | Ρ  | С  |
|--------|----------------|--------------|--------------|--------------------|---|---|----|----|
| PRACT  | PRACTICALS     |              |              |                    |   |   |    |    |
| 1      | BT8811         | Project Work | EEC          | 20                 | 0 | 0 | 20 | 10 |
|        |                |              | TOTAL        | 20                 | 0 | 0 | 20 | 10 |

#### **TOTAL CREDITS: 179**

#### PROFESSIONAL ELECTIVES (PEs)

#### PROFESSIONAL ELECTIVE I, SEMESTER V

| S. No. | COURSE<br>CODE | COURSE TITLE                  | CATE<br>GORY | CONTACT<br>PERIODS | L | т | Ρ | С |
|--------|----------------|-------------------------------|--------------|--------------------|---|---|---|---|
| 1.     | BT8001         | Biophysics                    | PE           | 3                  | 3 | 0 | 0 | 3 |
| 2.     | BT8002         | Symbolic Mathematics          | PE           | 3                  | 3 | 0 | 0 | 3 |
| 3.     | BT8003         | Principles of Food Processing | PE           | 3                  | 3 | 0 | 0 | 3 |
| 4.     | BT8004         | Advanced Biochemistry         | PE           | 3                  | 3 | 0 | 0 | 3 |
| 5.     | GE8071         | Disaster Management           | PE           | 3                  | 3 | 0 | 0 | 3 |

#### **PROFESSIONAL ELECTIVE II, SEMESTER VI**

| S. No. | COURSE<br>CODE | COURSE TITLE                 | CATE<br>GORY | CONTACT<br>PERIODS | L | т | Ρ | С |
|--------|----------------|------------------------------|--------------|--------------------|---|---|---|---|
| 1.     | BT8005         | Animal Biotechnology         | PE           | 3                  | 3 | 0 | 0 | 3 |
| 2.     | BT8006         | Systems Biology              | PE           | 3                  | 3 | 0 | 0 | 3 |
| 3.     | BT8071         | Biological Spectroscopy      | PE           | 3                  | 3 | 0 | 0 | 3 |
| 4.     | CH8791         | Transport Phenomena          | PE           | 3                  | 3 | 0 | 0 | 3 |
| 5.     | PY8023         | Chemistry of Medicines       | PE           | 3                  | 3 | 0 | 0 | 3 |
| 6.     | GE8075         | Intellectual Property Rights | PE           | 3                  | 3 | 0 | 0 | 3 |

| S. No. | COURSE<br>CODE | COURSE TITLE                                     | CATE<br>GORY | CONTACT<br>PERIODS | L | т | Ρ | С |
|--------|----------------|--------------------------------------------------|--------------|--------------------|---|---|---|---|
| 1.     | BT8007         | Cancer Biology                                   | PE           | 3                  | 3 | 0 | 0 | 3 |
| 2.     | BT8008         | Molecular Pathogenesis of<br>Infectious Diseases | PE           | 3                  | 3 | 0 | 0 | 3 |
| 3.     | BT8009         | Biopharmaceutical Technology                     | PE           | 3                  | 3 | 0 | 0 | 3 |
| 4.     | BT8010         | Bioentrepreneurship                              | PE           | 3                  | 3 | 0 | 0 | 3 |
| 5.     | GE8076         | Professional Ethics in Engineering               | PE           | 3                  | 3 | 0 | 0 | 3 |
| 6.     | BT8011         | Marine Biotechnology                             | PE           | 3                  | 3 | 0 | 0 | 3 |

#### PROFESSIONAL ELECTIVE III, SEMESTER VI

## PROFESSIONAL ELECTIVE IV, SEMESTER VI

| S. No. | COURSE<br>CODE | COURSE TITLE                 | CATE<br>GORY | CONTACT<br>PERIODS | L | т | Р | С |
|--------|----------------|------------------------------|--------------|--------------------|---|---|---|---|
| 1.     | BT8012         | Bioethics                    | PE           | 3                  | 3 | 0 | 0 | 3 |
| 2.     | BT8013         | Metabolic Engineering        | PE           | 3                  | 3 | 0 | 0 | 3 |
| 3.     | BT8014         | Lifestyle Diseases           | PE           | 3                  | 3 | 0 | 0 | 3 |
| 4.     | BT8015         | Structural Biology           | PE           | 3                  | 3 | 0 | 0 | 3 |
| 5.     | BT8016         | Genomics and Proteomics      | PE           | 3                  | 3 | 0 | 0 | 3 |
| 6.     | BT8017         | Biofuel                      | PE           | 3                  | 3 | 0 | 0 | 3 |
| 7.     | GE8073         | Fundamentals of Nano Science | PE           | 3                  | 3 | 0 | 0 | 3 |

#### **PROFESSIONAL ELECTIVE V, SEMESTER VII**

| S. No. | COURSE<br>CODE | COURSE TITLE                                           | CATE<br>GORY | CONTACT<br>PERIODS | L | т | Ρ | С |
|--------|----------------|--------------------------------------------------------|--------------|--------------------|---|---|---|---|
| 1.     | BT8018         | Plant Biotechnology                                    | PE           | 3                  | 3 | 0 | 0 | 3 |
| 2.     | BT8019         | Process Equipments and Plant<br>Design                 | PE           | 3                  | 3 | 0 | 0 | 3 |
| 3.     | BT8020         | Bioconjugate Technology and<br>Applications            | PE           | 3                  | 3 | 0 | 0 | 3 |
| 4.     | BT8021         | Genetics                                               | PE           | 3                  | 3 | 0 | 0 | 3 |
| 5.     | PY8071         | Clinical Trials                                        | PE           | 3                  | 3 | 0 | 0 | 3 |
| 6.     | GE8074         | Human Rights                                           | PE           | 3                  | 3 | 0 | 0 | 3 |
| 7.     | GE8072         | Foundation Skills in Integrated<br>Product Development | PE           | 3                  | 3 | 0 | 0 | 3 |

#### **PROFESSIONAL ELECTIVE VI, SEMESTER VII**

| S. No. | COURSE<br>CODE | COURSE TITLE                           | CATE<br>GORY | CONTACT<br>PERIODS | L | Т | Ρ | С |
|--------|----------------|----------------------------------------|--------------|--------------------|---|---|---|---|
| 1.     | BT8022         | Neurobiology and Cognitive<br>Sciences | PE           | 3                  | 3 | 0 | 0 | 3 |
| 2.     | BT8023         | Tissue Engineering                     | PE           | 3                  | 3 | 0 | 0 | 3 |
| 3.     | BT8091         | Instrumentation and Process<br>Control | PE           | 3                  | 3 | 0 | 0 | 3 |
| 4.     | BT8024         | Biosafety and Hazard<br>Management     | PE           | 3                  | 3 | 0 | 0 | 3 |
| 5.     | BT8025         | Immunotechnology                       | PE           | 3                  | 3 | 0 | 0 | 3 |

## **PROFESSIONAL CORE (PC)**

| S. No. | COURSE<br>CODE | COURSE TITLE                                         | CATE<br>GORY | CONTACT<br>PERIODS | L | т | Ρ | С |
|--------|----------------|------------------------------------------------------|--------------|--------------------|---|---|---|---|
| 1.     | BT8251         | Biochemistry                                         | PC           | 3                  | 3 | 0 | 0 | 3 |
| 2.     | BT8261         | Biochemistry Laboratory                              | PC           | 4                  | 0 | 0 | 4 | 2 |
| 3.     | BT8301         | Stoichiometry                                        | PC           | 5                  | 3 | 2 | 0 | 4 |
| 4.     | BT8302         | Applied Thermodynamics for<br>Biotechnologists       | PC           | 3                  | 3 | 0 | 0 | 3 |
| 5.     | BT8303         | Basic Industrial Biotechnology                       | PC           | 3                  | 3 | 0 | 0 | 3 |
| 6.     | BT8304         | Biorganic Chemistry                                  | PC           | 3                  | 3 | 0 | 0 | 3 |
| 7.     | BT8305         | Cell Biology                                         | PC           | 3                  | 3 | 0 | 0 | 3 |
| 8.     | BT8361         | Microbiology Laboratory                              | PC           | 4                  | 0 | 0 | 4 | 2 |
| 9.     | BT8311         | Cell Biology Laboratory                              | PC           | 4                  | 0 | 0 | 4 | 2 |
| 10.    | BT8402         | Molecular Biology                                    | PC           | 3                  | 3 | 0 | 0 | 3 |
| 11.    | BT8403         | Enzyme Technology and Bio-<br>transformations        | PC           | 3                  | 3 | 0 | 0 | 3 |
| 12.    | BT8404         | Bioprocess Principles                                | PC           | 3                  | 3 | 0 | 0 | 3 |
| 13.    | BT8412         | Molecular Biology Laboratory                         | PC           | 4                  | 0 | 0 | 4 | 2 |
| 14.    | BT8501         | Mass Transfer Operations                             | PC           | 3                  | 3 | 0 | 0 | 3 |
| 15.    | BT8502         | Analytical Methods and<br>Instrumentation            | PC           | 3                  | 3 | 0 | 0 | 3 |
| 16.    | BT8503         | Protein Engineering                                  | PC           | 3                  | 3 | 0 | 0 | 3 |
| 17.    | BT8511         | Bioprocess Laboratory I                              | PC           | 4                  | 0 | 0 | 4 | 2 |
| 18.    | BT8512         | Analytical Methods and<br>Instrumentation Laboratory | PC           | 4                  | 0 | 0 | 4 | 2 |
| 19.    | BT8651         | Bioinformatics                                       | PC           | 5                  | 3 | 2 | 0 | 4 |
| 20.    | BT8601         | Genetic Engineering                                  | PC           | 4                  | 4 | 0 | 0 | 4 |
| 21.    | BT8611         | Bioprocess Laboratory II                             | PC           | 4                  | 0 | 0 | 4 | 2 |
| 22.    | BT8612         | Genetic Engineering Laboratory                       | PC           | 4                  | 0 | 0 | 4 | 2 |
| 23.    | BT8751         | Downstream Processing                                | PC           | 3                  | 3 | 0 | 0 | 3 |
| 24.    | BT8791         | Immunology                                           | PC           | 3                  | 3 | 0 | 0 | 3 |
| 25.    | BT8711         | Downstream Processing Laboratory                     | PC           | 4                  | 0 | 0 | 4 | 2 |
| 26.    | BT8712         | Immunology Laboratory                                | PC           | 4                  | 0 | 0 | 4 | 2 |

### EMPLOYABILITY ENHANCEMENT COURSES (EEC)

| S. No.          | COURSE<br>CODE | COURSE TITLE                                | CATE<br>GORY | CONTACT<br>PERIODS | L | T | Ρ  | С  |
|-----------------|----------------|---------------------------------------------|--------------|--------------------|---|---|----|----|
| 1.              | HS8381         | Interpersonal Skills/Listening and Speaking | EEC          | 2                  | 0 | 0 | 2  | 1  |
| 2.              | HS8461         | Advanced Reading and Writing                | EEC          | 2                  | 0 | 0 | 2  | 1  |
| <mark>3.</mark> | HS8581         | Professional Communication                  | EEC          | 2                  | 0 | 0 | 2  | 1  |
| 4.              | BT8811         | Project Work                                | EEC          | 20                 | 0 | 0 | 20 | 10 |

INTERPERSONAL SKILLS/LISTENING AND SPEAKING L T P C

**HS8381** 

# 0 0 2 1

#### **OBJECTIVES:** The Course will enable learners to:

- Equip students with the English language skills required for the successful undertaking of academic studies with primary emphasis on academic speaking and listening skills.
- Provide guidance and practice in basic general and classroom conversation and to engage in specific academic speaking activities.
- improve general and academic listening skills
- Make effective presentations.

## UNIT I

Listening as a key skill- its importance- speaking - give personal information - ask for personal information - express ability - enquire about ability - ask for clarification Improving pronunciation - pronunciation basics taking lecture notes - preparing to listen to a lecture - articulate a complete idea as opposed to producing fragmented utterances.

#### UNIT II

Listen to a process information- give information, as part of a simple explanation - conversation starters: small talk - stressing syllables and speaking clearly - intonation patterns - compare and contrast information and ideas from multiple sources- converse with reasonable accuracy over a wide range of everyday topics.

#### UNIT III

Lexical chunking for accuracy and fluency- factors influence fluency, deliver a five-minute informal talk - greet - respond to greetings - describe health and symptoms - invite and offer - accept - decline - take leave - listen for and follow the gist- listen for detail

#### UNIT IV

Being an active listener: giving verbal and non-verbal feedback - participating in a group discussion - summarizing academic readings and lectures conversational speech listening to and participating in conversations - persuade.

#### UNIT V

Formal and informal talk - listen to follow and respond to explanations, directions and instructions in academic and business contexts - strategies for presentations and interactive communication - group/pair presentations - negotiate disagreement in group work.

TOTAL: 30 PERIODS

#### OUTCOMES: At the end of the course Learners will be able to:

- Listen and respond appropriately.
- Participate in group discussions
- Make effective presentations
- Participate confidently and appropriately in conversations both formal and informal

#### TEXT BOOKS:

- 1. Brooks, Margret. Skills for Success. Listening and Speaking. Level 4 Oxford University Press, Oxford: 2011.
- Richards,C. Jack. & David Bholke. Speak Now Level 3. Oxford University Press, Oxford: 2010

#### **REFERENCES:**

- 1. Bhatnagar, Nitin and MamtaBhatnagar. Communicative English for Engineers and Professionals. Pearson: New Delhi, 2010.
- 2. Hughes, Glyn and Josephine Moate. Practical English Classroom. Oxford University Press: Oxford, 2014.
- 3. Vargo, Mari. Speak Now Level 4. Oxford University Press: Oxford, 2013.
- 4. Richards C. Jack. Person to Person (Starter). Oxford University Press: Oxford, 2006.
- 5. Ladousse, Gillian Porter. Role Play. Oxford University Press: Oxford, 2014

#### **PROBABILITY AND STATISTICS** MA8391 LTPC

#### **OBJECTIVE:**

- This course aims at providing the required skill to apply the statistical tools in engineering problems.
- To introduce the basic concepts of probability and random variables. •
- To introduce the basic concepts of two dimensional random variables. •
- To acquaint the knowledge of testing of hypothesis for small and large samples which • plays an important role in real life problems.
- To introduce the basic concepts of classifications of design of experiments which plays • very important roles in the field of agriculture and statistical quality control.

#### UNIT I PROBABILITY AND RANDOM VARIABLES

Probability - The axioms of probability - Conditional probability - Baye's theorem - Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions.

#### UNIT II TWO - DIMENSIONAL RANDOM VARIABLES

Joint distributions - Marginal and conditional distributions - Covariance - Correlation and linear regression - Transformation of random variables - Central limit theorem (for independent and identically distributed random variables).

#### **TESTING OF HYPOTHESIS** UNIT III

Sampling distributions - Estimation of parameters - Statistical hypothesis - Large sample tests based on Normal distribution for single mean and difference of means -Tests based on t, Chisquare and F distributions for mean, variance and proportion - Contingency table (test for independent) - Goodness of fit.

#### **DESIGN OF EXPERIMENTS** UNIT IV

One way and Two way classifications - Completely randomized design - Randomized block design – Latin square design - 2<sup>2</sup> factorial design.

#### UNIT V STATISTICAL QUALITY CONTROL

Control charts for measurements (X and R charts) - Control charts for attributes (p, c and np charts) - Tolerance limits - Acceptance sampling.

#### **TOTAL: 60 PERIODS**

12

# 12

4 0 0 4

# 12

#### 12

12

- 7. Transformation
- 8. Selection of recombinants Antibiotic sensitivity assay
- 9. Plating of  $\lambda$  phage
- 10. Lamda phage lysis of liquid cultures

#### **TOTAL: 60 PERIODS**

#### **Equipment Needed for 30 Students**

| Electrophoresis Kit       | 1              |
|---------------------------|----------------|
| PCR                       | 1              |
| Incubators                | 2              |
| Light Microscopes         | 4              |
| Incubator Shaker          | 1              |
| Spectrophotometer         | 2              |
| Laminar Flow Chamber      | 2              |
| Glassware, Chemicals, Med | ia as required |

#### OUTCOMES:

By the end of this course, students should be able to:

- Demonstrate knowledge and understanding of the principles underpinning important techniques in molecular biology.
- Demonstrate knowledge and understanding of applications of these techniques.
- Demonstrate the ability to carry out laboratory experiments and interpret the results.
- Students will be aware of the hazardous chemicals and safety precautions in case of emergency

#### **REFERENCE:**

1. Sambrook, Joseph and David W. Russell " The Condensed Protocols: From Molecular Cloning: A Laboratory Manual" Cold Spring Harbor , 2006.

#### HS8461

#### ADVANCED READING AND WRITING



#### **OBJECTIVES:**

- Strengthen the reading skills of students of engineering.
- Enhance their writing skills with specific reference to technical writing.
- Develop students' critical thinking skills.
- Provide more opportunities to develop their project and proposal writing skills.

#### UNIT I

**Reading** - Strategies for effective reading-Use glosses and footnotes to aid reading comprehension- Read and recognize different text types-Predicting content using photos and title **Writing**-Plan before writing- Develop a paragraph: topic sentence, supporting sentences, concluding sentence – Write a descriptive paragraph

#### UNIT II

**Reading**-Read for details-Use of graphic organizers to review and aid comprehension **Writing**-State reasons and examples to support ideas in writing- Write a paragraph with reasons and examples- Write an opinion paragraph

#### UNIT III

**Reading**- Understanding pronoun reference and use of connectors in a passage- speed reading techniques-**Writing**- Elements of a good essay-Types of essays- descriptive-narrative- issue-based-argumentative-analytical.

#### UNIT IV

**Reading-** Genre and Organization of Ideas- **Writing-** Email writing- visumes – Job applicationproject writing-writing convincing proposals.

#### UNIT V

**Reading-** Critical reading and thinking- understanding how the text positions the reader- identify **Writing-** Statement of Purpose- letter of recommendation- Vision statement

#### TOTAL: 30 PERIODS

#### OUTCOMES: At the end of the course Learners will be able to:

- Write different types of essays.
- Write winning job applications.
- Read and evaluate texts critically.
- Display critical thinking in various professional contexts.

#### **TEXT BOOKS:**

- 1. Gramer F. Margot and Colin S. Ward Reading and Writing (Level 3) Oxford University Press: Oxford, 2011
- 2. Debra Daise, CharlNorloff, and Paul Carne Reading and Writing (Level 4) Oxford University Press: Oxford, 2011

#### **REFERENCES**:

- 1. Davis, Jason and Rhonda Llss. Effective Academic Writing (Level 3) Oxford University Press: Oxford, 2006
- **2.** E. Suresh Kumar and et al. **Enriching Speaking and Writing Skills.** Second Edition. Orient Black swan: Hyderabad, 2012
- 3. Withrow, Jeans and et al. Inspired to Write. Readings and Tasks to develop writing skills. Cambridge University Press: Cambridge, 2004
- 4. Goatly, Andrew. Critical Reading and Writing. Routledge: United States of America, 2000
- 5. Petelin, Roslyn and Marsh Durham. The Professional Writing Guide: Knowing Well and Knowing Why. Business & Professional Publishing: Australia, 2004

| BT8501 | MASS TRANSFER OPERATIONS | LTPC |
|--------|--------------------------|------|
|        |                          | 3003 |

#### **OBJECTIVES:**

- To define the principles of adsorption, absorption, leaching and drying extraction, distillation crystallization operations.
- To begin the concept of membrane separation process and develop skills of the students in the area of mass transfer operations with emphasis on separation and purification of products.

- 10. Chromatography analysis using TLC.
- 11. Chromatography analysis using column chromatography.

#### OUTCOME:

#### **TOTAL: 60 PERIODS**

• The students would visualize and interpret the theory of spectroscopic methods by hands on experiments.

#### **REFERENCES:**

- 1. Skoog, D.A. etal. "Principles of Instrumental Analysis", V<sup>th</sup> Edition, Thomson / Brooks Cole,1998.
- 2. Braun, R.D. "Introduction to Instrumental Analysis", Pharma Book Syndicate, 1987.
- 3. Willard, H.H. etal. "Instrumental Methods of Analysis", VI<sup>th</sup> Edition, CBS, 1986.
- 4. Ewing, G.W. "Instrumental Methods of Chemical Analysis", V<sup>th</sup> Edition, McGraw-Hill, 1985.

#### **Equipment Needed for 20 Students**

Colorimeter 2 Glassware, Chemicals, Media as required

HS8581

PROFESSIONAL COMMUNICATION

LT P C 0 0 2 1

#### **OBJECTIVES:**

#### The couse aims to:

- Enhance the Employability and Career Skills of students
- Orient the students towards grooming as a professional
- Make them Employable Graduates
- · Develop their confidence and help them attend interviews successfully

#### UNIT I

Introduction to Soft Skills-- Hard skills & soft skills - employability and career Skills—Grooming as a professional with values—Time Management—General awareness of Current Affairs

#### UNIT II

Self-Introduction-organizing the material - Introducing oneself to the audience – introducing the topic – answering questions – individual presentation practice— presenting the visuals effectively – 5 minute presentations

#### UNIT III

Introduction to Group Discussion— Participating in group discussions – understanding group dynamics - brainstorming the topic – questioning and clarifying –GD strategies- activities to improve GD skills

#### UNIT IV

Interview etiquette – dress code – body language – attending job interviews– telephone/skype interview -one to one interview &panel interview – FAQs related to job interviews

#### UNIT V

Recognizing differences between groups and teams- managing time-managing stress- networking professionally- respecting social protocols-understanding career management-developing a long-term career plan-making career changes

TOTLA: 30 PERIODS

#### OUTCOMES:

#### At the end of the course Learners will be able to:

- Make effective presentations
- Participate confidently in Group Discussions.
- Attend job interviews and be successful in them.
- Develop adequate Soft Skills required for the workplace

#### **Recommended Software**

- 1. Globearena
  - 2. Win English

#### **REFERENCES:**

- 1. Butterfield, Jeff Soft Skills for Everyone. Cengage Learning: New Delhi, 2015
- 2. Interact English Lab Manual for Undergraduate Students, OrientBalckSwan: Hyderabad, 2016.
- 3. E. Suresh Kumar et al. **Communication for Professional Success.** Orient Blackswan: Hyderabad, 2015
- 4. Raman, Meenakshi and Sangeeta Sharma. **Professional Communication**. Oxford University Press: Oxford, 2014
- 5. S. Hariharanetal. **Soft Skills**. MJP Publishers: Chennai, 2010.

#### BT8651 BIOINFORMATICS LTPC

| 3 | 2 | 0 | 4 |
|---|---|---|---|
|   |   |   |   |

#### **OBJECTIVES:**

- To improve the programming skills of the student
- To let the students know the recent evolution in biological science

#### UNIT I INTRODUCTION

Introduction to Operating systems, Linux commands, File transfer protocols ftp and telnet, Introduction to Bioinformatics and Computational Biology, Biological sequences, Biological databases, Genome specific databases, Data file formats, Data life cycle, Database management system models, Basics of Structured Query Language (SQL).

#### UNIT II SEQUENCE ALIGNMENT

Sequence Analysis, Pair wise alignment, Dynamic programming algorithms for computing edit distance, string similarity, shotgun DNA sequencing, end space free alignment. Multiple sequence alignment, Algorithms for Multiple sequence alignment, Generating motifs and profiles, Local and Global alignment, Needleman and Wunsch algorithm, Smith Waterman algorithm, BLAST, PSIBLAST and PHIBLAST algorithms.

#### UNIT III PHYLOGENETIC METHODS

Introduction to phylogenetics, Distance based trees UPGMA trees, Molecular clock theory, Ultrametric trees, Parsimonious trees, Neighbour joining trees, trees based on morphological traits, Bootstrapping. Protein Secondary structure and tertiary structure prediction methods, Homology modeling, abinitio approaches, Threading, Critical Assessment of Structure Prediction, Structural genomics.

#### UNIT IV PROTEIN STRUCTURE ANALYSIS

Machine learning techniques: Artificial Neural Networks in protein secondary structure prediction, Hidden Markov Models for gene finding, Decision trees, Support Vector Machines. Introduction to Systems Biology and Synthetic Biology, Microarray analysis, DNA computing, Bioinformatics

#### 64

#### (9 + 6)

(9 + 6)

# (9 + 6)

#### (9 + 6)

- This course paves a ways to the students to acquire knowledge on novel biotechnological and pharmaceutical products, current medicines and their applications in therapeutic and diagnostic fields.
- Demonstrate knowledge and understanding of current topical and newly emerging aspects of pharmaceutical biotechnology.
- Understand the legal steps involved in progressing a new drug to market. Grasping the current regulatory acts and safety norms of the modern pharmaceutical industries.

#### **TEXT BOOK:**

1. Finkel, Richard, etal., "Lippincott's Illustrated Reviews Pharmacology" IV<sup>th</sup> Edition. Wolters Kluwer / Lippincott Williams & Wilkins, 2009.

#### **REFERENCES:**

- 1. Gareth Thomas. Medicinal Chemistry. An introduction. John Wiley. 2000.
- 2. Katzung B.G. Basic and Clinical Pharmacology, Prentice Hall of Intl. 1995.

| BT8010                                                       | BIOENTREPRENEURSHIP   | LT PC<br>3 0 0 3 |
|--------------------------------------------------------------|-----------------------|------------------|
| UNIT I                                                       |                       | 9                |
| -                                                            |                       | -                |
| UNIT II                                                      |                       | 9                |
| Develop a Business Plan                                      |                       |                  |
| UNIT III                                                     |                       | 9                |
| Choose Your Location and S                                   | Set Up for Business   |                  |
| <ul> <li>Market Your Business</li> </ul>                     |                       |                  |
| <ul> <li>Hire and Manage a Staff</li> <li>UNITIV:</li> </ul> |                       | 9                |
| Finance, Protect and Insure                                  | Your Business         | 9                |
| <ul> <li>Record Keeping and Accourt</li> </ul>               |                       |                  |
| Financial Management                                         |                       |                  |
| UNIT V                                                       |                       | 9                |
| <ul> <li>Meet Your Legal, Ethical, Sc</li> </ul>             | -                     |                  |
| <ul> <li>Growth in Today's Marketpla</li> </ul>              | ace<br>TOTAL: 45      | DEDIODS          |
| ΤΕΧΤ ΒΟΟΚ                                                    | TOTAL: 45             | FERIODS          |
| 1 Entrepreneurship Ideas in Acti                             | on-South-Western 2000 |                  |

1. Entrepreneurship Ideas in Action—South-Western, 2000.

#### GE8076

#### **PROFESSIONAL ETHICS IN ENGINEERING**

#### **OBJECTIVE:**

• To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

#### UNIT I HUMAN VALUES

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy – Self confidence – Character – Spirituality – Introduction to Yoga and meditation for professional excellence and stress management.

#### UNIT II ENGINEERING ETHICS

Senses of 'Engineering Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Models of professional roles - Theories about right action – Self-interest – Customs and Religion – Uses of Ethical Theories.

#### UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION

Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

#### UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk - Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination.

#### UNIT V GLOBAL ISSUES

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership –Code of Conduct – Corporate Social Responsibility.

#### TOTAL: 45 PERIODS

#### OUTCOME:

• Upon completion of the course, the student should be able to apply ethics in society, discuss the ethical issues related to engineering and realize the responsibilities and rights in the society.

#### **TEXT BOOKS:**

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

#### **REFERENCES:**

- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics -

9

10

9

8

9

#### ANNA UNIVERSITY:: CHENNAI 600 025 AFFILIATED INSTITUTIONS M. TECH. BIOTECHNOLOGY REGULATIONS – 2017 CHOICE BASED CREDIT SYSTEM

#### PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) :

- I. To provide students with solid fundamentals and strong foundation in statistical, scientific and engineering subjects required to create and innovate in the field of biotechnology.
- II. To train students with good scientific and technical knowledge so as to comprehend, analyze, design, and create novel products and solutions for developing novel therapeutics and enzymes.
- III. To prepare students to excel and succeed in Biotechnology research or industry through the latest state-of-art post graduate education.
- IV. To sensitize students about scientific temper and the necessity of bioethics, social responsibility and awareness of the environment.
- V. This course enables the student to develop good communication and leadership skills, respect for authority, loyalty and the life-long learning needed for a successful scientific and professional career.

#### PROGRAMME OUTCOMES (POs):

On successful completion of the Masters in Biotechnology graduates will be able to

- 1. Acquire in depth knowledge of Biological science and Bioengineering for gaining ability to develop and evaluate new ideas
- 2. Demonstrate Scientific and technological skills to design and perform research through modern techniques for the development of high throughput process and products.
- 3. Analyze Biotechnological problems and formulate intellectual and innovative vistas for research and development
- 4. Provide potential solutions for solving technological problems in various domains of Biotechnology considering the societal, public health, cultural environmental factors.
- 5. Examine the outcomes of Biotechnological issues critically and gain knowledge for composing suitable corrective measures.
- 6. Create and apply modern engineering tools for the prediction and modeling of complex bioengineering activities
- 7. Posses self management and team work skills towards collaborative, multidisciplinary scientific endeavors in order to achieve common goals
- 8. Develop entrepreneurial and managerial skills for the implementation of multidisciplinary projects
- 9. Demonstrate adherence to accepted standards of professional bioethics and social responsibilities
- 10. Posses the attitude necessary for lifelong and acquire communication skills relevant to professional positions

#### SEMESTER III

| S.No | COURSE<br>CODE | COURSE TITLE                                       | CATE<br>GORY | CONTACT<br>PERIODS | L | Т | Ρ  | С  |
|------|----------------|----------------------------------------------------|--------------|--------------------|---|---|----|----|
| PRAC | TICAL          |                                                    |              |                    |   |   |    |    |
| 1    | BY5311         | Advanced Genetic Engineering<br>Laboratory         | PC           | 6                  | 0 | 0 | 6  | 3  |
| 2    | BY5312         | Bioprocess and Downstream<br>Processing Laboratory | PC           | 6                  | 0 | 0 | 6  | 3  |
| PROJ | ECT            |                                                    |              | •                  |   |   |    |    |
| 4    | BY5313         | Project Work (Phase I)                             | EEC          | 12                 | 0 | 0 | 12 | 6  |
|      |                |                                                    | TOTAL        | 24                 | 0 | 0 | 24 | 12 |

#### **SEMESTER IV**

| S.No | COURSE<br>CODE | COURSE TITLE            | CATE<br>GORY | CONTACT<br>PERIODS | L | т | Ρ  | С  |
|------|----------------|-------------------------|--------------|--------------------|---|---|----|----|
| PROJ | ECT            |                         |              |                    |   |   |    |    |
| 1    | BY5411         | Project Work (Phase II) | EEC          | 24                 | 0 | 0 | 24 | 12 |
|      |                |                         | TOTAL        | 24                 | 0 | 0 | 24 | 12 |

#### **TOTAL CREDITS : 75**

| S.No | COURSE<br>CODE | COURSE TITLE                                                       | CATE<br>GORY | CONTACT<br>PERIODS | L | т | Ρ | С |
|------|----------------|--------------------------------------------------------------------|--------------|--------------------|---|---|---|---|
| 1    | BY5001         | Molecular Concepts in<br>Biotechnology (For Engineering<br>Stream) | PE           | 3                  | 3 | 0 | 0 | 3 |
| 2    | BY5002         | Principles of Chemical<br>Engineering (For Science<br>Stream)      | PE           | 3                  | 3 | 0 | 0 | 3 |
| 3    | BY5003         | Metabolic Process and<br>Engineering (For Biotechnology<br>Stream) | PE           | 3                  | 3 | 0 | 0 | 3 |

## SEMESTER I, PROFESSIONL ELECTIVES I

#### SEMESTER I, PROFESSIONL ELECTIVES II

| S.No | COURSE<br>CODE | COURSE TITLE                                                        | CATE<br>GORY | CONTACT<br>PERIODS | L | т | Ρ | С |
|------|----------------|---------------------------------------------------------------------|--------------|--------------------|---|---|---|---|
| 1    | BY5004         | Animal Biotechnology                                                | PE           | 3                  | 3 | 0 | 0 | 3 |
| 2    | BY5005         | Computer Aided Learning of<br>Structure and Function of<br>Proteins | PE           | 4                  | 2 | 2 | 0 | 3 |
| 3    | BY5006         | Analytical Techniques in<br>Biotechnology                           | PE           | 3                  | 3 | 0 | 0 | 3 |
| 4    | BY5007         | Bio Thermodynamics                                                  | PE           | 3                  | 3 | 0 | 0 | 3 |
| 5    | BY5008         | Plant Biotechnology                                                 | PE           | 3                  | 3 | 0 | 0 | 3 |

|    |        | Fermentation Technology         |    |   |   |   |   |   |
|----|--------|---------------------------------|----|---|---|---|---|---|
| 3  | BY5103 | Bioinformatics and Applications | PC | 4 | 3 | 2 | 0 | 4 |
| 4  | BY5201 | Bio Separation Technology       | PC | 3 | 3 | 0 | 0 | 3 |
| 5  | BY5202 | Bioprocess Engineering          | PC | 4 | 3 | 2 | 0 | 4 |
| 6  | BY5203 | Bioreactor Design and Analysis  | PC | 4 | 4 | 0 | 0 | 4 |
| 7  | BY5204 | Immunotechnology                | PC | 3 | 3 | 0 | 0 | 3 |
| 8  | BY5205 | Advanced Genomics and           | PC | 3 | 3 | 0 | 0 | 3 |
| 0  | D13203 | Proteomics                      | FC | 5 | 5 | 0 | U | 5 |
|    |        | Preparative and Analytical      |    |   |   |   |   |   |
| 9  | BY5111 | Techniques in Biotechnology     | PC | 4 | 0 | 0 | 4 | 2 |
|    |        | Laboratory                      |    |   |   |   |   |   |
| 10 | BY5211 | Immunotechnology Laboratory     | PC | 4 | 0 | 0 | 4 | 2 |
| 11 | BY5311 | Advanced Genetic Engineering    | PC | 4 | 0 | 0 | 6 | 3 |
|    | DISSII | Laboratory                      | 10 | 7 | U | U | 0 | 5 |
| 12 | BY5312 | Bioprocess and Downstream       | PC | 4 | 0 | 0 | 6 | 3 |
| 12 | 010012 | Processing Laboratory           | 10 | + | 0 |   |   | 5 |

# EMPLOYABILITY ENHANCEMENT COURSES (EEC)

| S. No.  | COURSE<br>CODE | COURSE TITLE            |     | CONTACT<br>PERIODS | L | Т | Р  | С  |
|---------|----------------|-------------------------|-----|--------------------|---|---|----|----|
| PROJECT |                |                         |     |                    |   |   |    |    |
| 1       | BY5313         | Project Work (Phase I)  | EEC | 12                 | 0 | 0 | 12 | 6  |
| 2       | BY5411         | Project Work (Phase II) | EEC | 24                 | 0 | 0 | 24 | 12 |



(An Autonomous Institution - AFFILIATED TO ANNA UNIVERSITY, CHENNAI) S.P.G.Chidambara Nadar - C.Nagammal Campus S.P.G.C.Nagar, K.Vellakulam - 625 701, (Near Virudhunagar), Madurai District.

#### **B.TECH. BIOTECHNOLOGY**

#### **Regulation - 2020**

#### AUTONOMOUS SYLLABUS

#### CHOICE BASED CREDIT SYSTEM (CBCS)

#### **CURRICULUM AND SYLLABI**

#### (III & IV)

#### SEMESTER III

|          |        |                        |          | Р  | ERIC | D  | TOTAL   |         |
|----------|--------|------------------------|----------|----|------|----|---------|---------|
| SI.      | COURSE | COURSE TITLE           | CATEGORY | 5  | S PE | R  | CONTAC  | CREDITS |
| No.      | CODE   |                        | CATEGORT | ١  | NEE  | K  | Т       | CREDITS |
|          |        |                        |          | L  | Т    | Ρ  | PERIODS |         |
| THE      | ORY    | I                      |          |    |      | 1  | I       | 1       |
|          |        | Transforms and         |          |    |      |    |         |         |
| 1        | MA1373 | Partial Differential   | BS       | 3  | 1    | 0  | 4       | 4       |
|          |        | Equations              |          |    |      |    |         |         |
| 2        | BT1301 | Cell Biology           | PC       | 3  | 0    | 0  | 3       | 3       |
| 3        | BT1302 | Microbiology           | PC       | 3  | 0    | 0  | 3       | 3       |
| 4        | BT1303 | Stoichiometry          | PC       | 3  | 1    | 0  | 4       | 4       |
| 5        | BT1306 | Thermodynamics         | ES       | 3  | 0    | 0  | 3       | 3       |
| 5        | D11300 | for Biotechnologist    | ES       | 3  | 0    | 0  | 5       | 3       |
| PRA      |        | I                      |          |    |      | 1  | I       | 1       |
| 6        | BT1311 | Cell Biology           | PC       | 0  | 0    | 4  | 4       | 2       |
| 0        | DIIJII | Laboratory             | FC       | 0  | 0    | 4  | 4       | 2       |
| 7        | BT1312 | Microbiology           | PC       | 0  | 0    | 4  | 4       | 2       |
| <i>'</i> | DIIJIZ | Laboratory             | FU       | 0  | 0    | 4  | 4       | 2       |
|          |        | Interpersonal Skills - |          |    |      |    |         |         |
| 8        | HS1321 | Listening and          | EE       | 0  | 0    | 2  | 2       | 1       |
|          |        | Speaking               |          |    |      |    |         |         |
|          |        | 1                      | TOTAL    | 15 | 2    | 10 | 27      | 22      |

12. Effect of Disinfectants- Phenol Coefficient

#### **TOTAL: 60 PERIODS**

#### **COURSE OUTCOMES**

After successful completion of the course, the students will be able to

- CO1 Prepare different types of media and demonstrate culture techniques
- CO2 Demonstrate the different types of staining for microbe identification.
- CO3 Perform different methods of enumeration of microorganisms in different samples and microbial growth.
- CO4 Evaluate the effect of various physical factors on growth and microbial biochemical efficacy.
- CO5 Carry out antibiotic sensitivity and effect of disinfectant on growth of microorganisms.

#### **TEXT BOOK**

1. Cappuccino, J.G. and N. Sherman 2013 —*Microbiology: A Laboratory Manual*II, 10th Edition, Addison-Wesley.

#### REFERENCES

1. Brown, A. and Smith, H., 2014. *Benson's Microbiological Applications, Laboratory Manual in General Microbiology* 

# HS1321 INTERPERSONAL SKILLS - LISTENING AND L T P C SPEAKING

#### **OBJECTIVES:**

The course will enable learners to:

- Equip students with the English language skills required for the successful undertaking of academic studies with primary emphasis on academic speaking and listening skills.
- Provide guidance and practice in basic general and classroom conversation and to engage in specific academic speaking activities.
- Improve general and academic listening skills
- Make effective presentations.

0 0 2 1

#### **UNIT I LISTENING AS A KEY SKILL**

Listening as a key skill- its importance- speaking – give personal information – ask for personal information – express ability – enquire about ability – ask for clarification - Improving pronunciation– pronunciation basics — stressing syllables and speaking clearly – intonation patterns – conversation starters: small talk.

#### UNIT II LISTEN TO A PROCESS INFORMATION

Listen to a process information- give information, as part of a simple explanation — taking lecture notes – preparing to listen to a lecture – articulate a complete idea as opposed to producing fragmented utterances - compare and contrast information and ideas from multiple sources- converse with reasonable accuracy over a wide range of everyday topics.

#### **UNIT III LEXICAL CHUNKING**

Lexical chunking for accuracy and fluency- factors influence fluency, deliver a five-minute informal talk – greet – respond to greetings – describe health and symptoms – invite and offer –accept – decline – take leave – listen for and follow the gist- listen for detail

#### UNIT IV GROUP DISCUSSION

Being an active listener: giving verbal and non-verbal feedback – participating in a group discussion – summarizing academic readings and lectures conversational speech listening to and participating in conversations – persuade- negotiate disagreement in group work.

#### **UNIT V GROUP & PAIR PRESENTATIONS**

Formal and informal talk – listen to follow and respond to explanations, directions and instructions in academic and business contexts – strategies for presentations and interactive communication – group/pair presentations

#### **TOTAL: 30 PERIODS**

6

6

6

6



(An Autonomous Institution - AFFILIATED TO ANNA UNIVERSITY, CHENNAI) S.P.G.Chidambara Nadar - C.Nagammal Campus S.P.G.C.Nagar, K.Vellakulam - 625 701, (Near Virudhunagar), Madurai District.

#### DEPARTMENT OF BIOTECHNOLOGY M.TECH BIOTECHNOLOGY R – 2020 AUTONOMOUS CURRICULUM & SYLLABUS CHOICE BASED CREDIT SYSTEM

#### VISION:

To make the Department of Biotechnology, unique of its kind in the field of research and development activities pertaining to the field of biotechnology in this part of the world.

#### **MISSION:**

To impart highly innovative and technical knowledge in the field of biotechnology to the urban and rural student folks through "Total Quality Education".

#### **PROGRAM OUTCOMES:**

- **PO1:** An ability to independently carry out research /investigation and development work to solve practical problems
- **PO2:** An ability to write and present a substantial technical report/document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program

#### **OPEN ELECTIVE (OFFERING TO OTHER PG DEPARTMENT)**

| S. No. | COURSE<br>CODE | COURSE TITLE                       | CATE<br>GORY | TOTAL<br>CONTACT<br>PERIODS | L | т | Ρ | с |
|--------|----------------|------------------------------------|--------------|-----------------------------|---|---|---|---|
| 1      | ()N/IR1251     | Fundamentals of<br>Nutrition       | OE           | 3                           | 3 | 0 | 0 | 3 |
| 2      | OMB1252        | Lifestyle Diseases                 | OE           | 3                           | 3 | 0 | 0 | 3 |
| 3      | OMB1253        | Principles of Food<br>Preservation | OE           | 3                           | 3 | 0 | 0 | 3 |

#### EMPLOYABILITY ENHANCEMENT COURSES (EEC)

| S.<br>No. | COURSE<br>CODE | COURSE TITLE       | CATEGORY | TOTAL<br>CONTACT<br>PERIODS | L | т | Ρ  | с  |
|-----------|----------------|--------------------|----------|-----------------------------|---|---|----|----|
|           |                | F                  | PROJECT  |                             |   |   |    |    |
| 1         | MB1321         | Project Phase - I  | EE       | 12                          | 0 | 0 | 12 | 6  |
| 2         | MB1421         | Project Phase - II | EE       | 24                          | 0 | 0 | 24 | 12 |

#### SUMMARY:

| Category                            | SEM 1 | SEM 2 | SEM 3 | SEM 4 | TOTAL |
|-------------------------------------|-------|-------|-------|-------|-------|
| Foundation Course                   | 4     | -     | -     | -     | 4     |
| Professional Core<br>Course         | 12    | 12    | 6     | -     | 30    |
| Professional Elective<br>Course     | 9     | 6     | -     | -     | 15    |
| Open Elective                       | -     | 3     | -     | -     | 3     |
| Employability<br>Enhancement Course | -     | -     | 6     | 12    | 18    |
| Online Course                       | -     | 3     | -     | -     | 3     |
| Total Credits                       | 25    | 24    | 12    | 12    | 73    |

#### REFERENCES

- 1. Niazi, S.K. and Brown, J.L., 2017. *Fundamentals of modern bioprocessing*. CRC Press.
- 2. Saha, G., Barua, A. and Sinha, S., 2017. *Bioreactors: Animal Cell Culture Control for Bioprocess Engineering*. CRC Press.
- 3. Biotech, A.P., 2001. Protein purification handbook

#### MB1321

#### **PROJECT PHASE - I**



#### OBJECTIVES

- To Make the students identify a problem/process relevant to their field of interest that can be carried out
- To Make them equipped to search databases and journals to collect relevant data and identify a solution
- To Plan, learn and perform experiments to verify the solution

#### COURSE OUTCOMES:

#### At the end of the course students will be able to

- CO 1: Identify the field of interest towards research/industrial problems
- CO 2: equip the students to search and think about logical solutions

#### **SEMESTER IV**

MB1421

PROJECT PHASE - II

| L | Т | Ρ  | С  |
|---|---|----|----|
| 0 | 0 | 24 | 12 |

#### OBJECTIVES

- 1. Train students to analyze a problem/ think innovatively to develop new methods/product /process
- 2. Make them comprehend how to find solutions/ create products economically and in an environmentally sustainable way
- **3.** Enable them to acquire technical and experimental skills to validate the solution, analyze the results and communicate

#### **COURSE OUTCOMES:**

At the end of the project the student will be able to

- CO 1: Formulate problems statement for developing new methods/solutions/processes.
- CO 2: Plan experiments in a logical manner/ work out sustainability
- CO 3: Execute experiments systematically and collect the data.
- CO 4: Assess, interpret and communicate the results